Senin, 28 April 2008

Electromagnetic fields and public health: extremely low frequency (ELF)

Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to many EMF frequencies are increasing significantly as technology advances unabated and new applications are found.

While the enormous benefits of using electricity in everyday life and health care are unquestioned, during the past 20 years the general public has become increasingly concerned about potential adverse health effects of exposure to electric and magnetic fields at extremely low frequencies (ELF). Such exposures arise mainly from the transmission and use of electrical energy at the power frequencies of 50/60 Hz.

The World Health Organization (WHO) is addressing the associated health issues through the International Electromagnetic Fields Project. Any health consequence needs to be clearly identified and appropriate mitigation steps taken if deemed necessary. Present research results are often contradictory. This adds to public concern, confusion and lack of confidence that supportable conclusions about safety can be reached.

The purpose of this Fact Sheet is to provide information about ELF field exposure and its possible impacts on health within the community and the workplace. Information comes from a WHO review of this subject and other recent reviews by eminent authorities.

ELF electric and magnetic fields

Electromagnetic fields consist of electric (E) and magnetic (H) waves travelling together, as shown in the diagram below. They travel at the speed of light and are characterised by a frequency and a wavelength. The frequency is simply the number of oscillations in the wave per unit time, measured in units of hertz (1 Hz = 1 cycle per second), and the wavelength is the distance travelled by the wave in one oscillation (or cycle).

ELF fields are defined as those having frequencies up to 300 Hz. At frequencies this low, the wavelengths in air are very long (6000 km at 50 Hz and 5000 km at 60 Hz), and, in practical situations, the electric and magnetic fields act independently of one another and are measured separately.

Electric fields arise from electric charges. They govern the motion of other charges situated in them. Their strength is measured in units of volt per metre, (V/m), or kilovolt per metre (kV/m). When charges accumulate on an object they create a tendency for like or opposite charges to be repelled or attracted, respectively. The strength of that tendency is characterised by the voltage and is measured in units of volt, (V). Any device connected to an electrical outlet, even if the device is not switched on, will have an associated electric field that is proportional to the voltage of the source to which it is connected. Electric fields are strongest close the device and diminish with distance. Common materials, such as wood and metal, shield against them.

Magnetic fields arise from the motion of electric charges, i.e. a current. They govern the motion of moving charges. Their strength is measured in units of ampere per metre, (A/m) but is usually expressed in terms of the corresponding magnetic induction measured in units of tesla, (T), millitesla (mT) or microtesla (µT). In some countries another unit called the gauss, (G), is commonly used for measuring magnetic induction (10,000 G = 1 T, 1 G = 100 µT, 1 mT = 10 G, 1 µT = 10 mG). Any device connected to an electrical outlet, when the device is switched on and a current is flowing, will have an associated magnetic field that is proportional to the current drawn from the source to which it is connected. Magnetic fields are strongest close to the device and diminish with distance. They are not shielded by most common materials, and pass easily through them.

Sources

Naturally occurring 50/60 Hz electric and magnetic field levels are extremely low; of the order of 0.0001 V/m, and 0.00001 µT respectively. Human exposure to ELF fields is primarily associated with the generation, transmission and use of electrical energy. Sources and typical upper limits of ELF fields found in the community, home and workplace are given below.

Community: Electrical energy from generating stations is distributed to communities via high voltage transmission lines. Transformers are used to lower the voltage for connections to residential distribution lines that deliver the energy to homes. Electric and magnetic fields underneath overhead transmission lines may be as high as 12 kV/m and 30 µT respectively. Around generating stations and substations, electric fields up to 16 kV/m and magnetic fields up to 270 µT may be found.

Home: Electric and magnetic fields in homes depend on many factors, including the distance from local power lines, the number and type of electrical appliances in use in the home, and the configuration and position of household electrical wiring. Electric fields around most household appliances and equipment typically do not exceed 500 V/m and magnetic fields typically do not exceed 150 µT. In both cases, field levels may be substantially greater at small distances but they do decrease rapidly with distance.

Workplace: Electric and magnetic fields exist around electrical equipment and wiring throughout industry. Workers who maintain transmission and distribution lines may be exposed to very large electric and magnetic fields. Within generating stations and substations electric fields in excess of 25 kV/m and magnetic fields in excess of 2 mT may be found. Welders can be subjected to magnetic field exposures as high as 130 mT. Near induction furnaces and industrial electrolytic cells magnetic fields can be as high as 50 mT. Office workers are exposed to very much smaller fields when using equipment such as photocopying machines and video display terminals.

Health effects

The only practical way that ELF fields interact with living tissues is by inducing electric fields and currents in them. However, the magnitude of these induced currents from exposure to ELF fields at levels normally found in our environment, is less than the currents occurring naturally in the body.

Electric Field Studies: Available evidence suggests that, apart from stimulation arising from electric charge induced on the surface of the body, the effects of exposures of up to 20 kV/m are few and innocuous. Electric fields have not been shown to have any effect on reproduction or development in animals at strengths over 100 kV/m.

Magnetic Field Studies: There is little confirmed experimental evidence that ELF magnetic fields can affect human physiology and behaviour at field strengths found in the home or environment. Exposure of volunteers for several hours to ELF fields up to 5 mT had little effect on a number of clinical and physiological tests, including blood changes, ECG, heart rate, blood pressure, and body temperature.

Melatonin: Some investigators have reported that ELF field exposure may suppress secretion of melatonin, a hormone connected with our day-night rhythms. It has been suggested that melatonin might be protective against breast cancer so that such suppression might contribute to an increased incidence of breast cancer already initiated by other agents. While there is some evidence for melatonin effects in laboratory animals, volunteer studies have not confirmed such changes in humans.

Cancer: There is no convincing evidence that exposure to ELF fields causes direct damage to biological molecules, including DNA. It is thus unlikely that they could initiate the process of carcinogenesis. However, studies are still underway to determine if ELF exposure can influence cancer promotion or co-promotion. Recent animal studies have not found evidence that ELF field exposure affects cancer incidence.

Epidemiological Studies: In 1979 Wertheimer and Leeper reported an association between childhood leukaemia and certain features of the wiring connecting their homes to the electrical distribution lines. Since then, a large number of studies have been conducted to follow up this important result. Analysis of these papers by the US National Academy of Sciences in 1996 suggested that residence near power lines was associated with an elevated risk of childhood leukaemia (relative risk RR=1.5), but not with other cancers. A similar association between cancer and residential exposure of adults was not seen from these studies.

Many studies published during the last decade on occupational exposure to ELF fields have exhibited a number of inconsistencies. They suggest there may be a small elevation in the risk of leukaemia among electrical workers. However, confounding factors, such as possible exposures to chemicals in the work environment, have not been adequately taken into account in many of them. Assessment of ELF field exposure has not correlated well with the cancer risk among exposed subjects. Therefore, a cause-and-effect link between ELF field exposure and cancer has not been confirmed.

NIEHS Panel: The US National Institute of Environmental Health Sciences (NIEHS) has completed its 5-year RAPID Program.The RAPID Program replicated and extended studies reporting effects with possible health implications, and conducted further studies to determine if indeed there was any health consequence from ELF field exposure. In June 1998, NIEHS convened an international Working Group to review the research results. NIEHS's international panel concluded, using criteria established by the International Agency for Research on Cancer (IARC), that ELF fields should be considered as a "possible human carcinogen".

"Possible human carcinogen" is the weakest of three categories ("possibly carcinogenic to humans", "probably carcinogenic to humans" and "is carcinogenic to humans") used by IARC to classify scientific evidence on potential carcinogens. IARC has two further classifications of scientific evidence: "is not classifiable" and "is probably not carcinogenic to humans", but the NIEHS Working Group considered there was enough evidence to eliminate these categories.

"Possible human carcinogen" is a classification used to denote an agent for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence for carcinogenicity in experimental animals. Thus the classification is based on the strength of scientific evidence, not on the strength of carcinogenicity or risk of cancer from the agent. Thus, "possible human carcinogen" means limited credible evidence exists suggesting that exposure to ELF fields may cause cancer. While it cannot be excluded that ELF field exposure causes cancer from available evidence, further focused, high quality research is now needed to resolve this issue.

The decision of the NIEHS Working Group was based mainly on the appearance of consistency in epidemiological studies suggesting residence near power lines resulted in an apparently higher risk of leukaemia in children. Support for this association was found in studies relating childhood leukaemia incidence to proximity to power lines and to magnetic fields measured for 24 hours in homes. Furthermore, the Working Group also found limited evidence for an increased occurrence of chronic lymphocytic leukaemia in the occupational setting.

International EMF Project

WHO's International EMF Project has been established to work towards resolving the health issues raised by EMF exposure. Scientific reviews have been conducted and gaps in knowledge identified. This has resulted in a research agenda for the next few years that will ensure better health risk assessments can be made. A formal task group meeting to assess the results is scheduled by IARC in 2001. WHO will then adopt IARC's conclusions and complete an assessment of non-cancer health risks in 2002.

International Standards

The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has published guidelines on exposure limits for all EMF. The guidelines provide adequate protection against known health effects and those that can occur when touching charged objects in an external electric field. Limits of EMF exposure recommended in many countries are broadly similar to those of ICNIRP, which is a non-governmental organization (NGO) formally recognised by WHO and a full partner in the International EMF Project. It will reassess its guidelines once the EMF Project has completed new health risk assessments.

Protective Measures

Large conducting objects such as metal fences, barriers or similar metallic structures permanently installed near high voltage electrical transmission lines should be grounded. If such objects are not grounded, the power line can charge them to a sufficiently high voltage that a person who comes into close proximity or contact with the object can receive a startling and uncomfortable shock. A person may also receive such a shock when touching a car or bus parked under or very near high voltage power lines.

General public: Since current scientific information is only weakly suggestive and does not establish that exposure to ELF fields at levels normally encountered in our living environment might cause adverse health effects, there is no need for any specific protective measures for members of the general public. Where there are sources of high ELF field exposure, access by the public will generally be restricted by fences or barriers, so that no additional protective measures will be needed.

Workers: Protection from 50/60 Hz electric field exposure can be relatively easily achieved using shielding materials. This is only necessary for workers in very high field areas. More commonly, where electric fields are very large, access of personnel is restricted. There is no practical, economical way to shield against ELF magnetic fields. Where magnetic fields are very strong the only practical protective method available is to limit of personnel.

EMF Interference

Strong ELF fields cause electromagnetic interference (EMI) in cardiac pacemakers or other implanted electromedical devices. Individuals using these devices should contact their doctor to determine their susceptibility to these effects. WHO urges manufacturers of these devices to make them much less susceptible to EMI.

Office workers may see image movement on the screen of their computer terminal. If ELF magnetic fields around the terminal are greater than about 1 µT (10 mG) this can cause interference with the electrons producing the image on the screen. A simple solution to this problem is to relocate the computer to another part of the room where the magnetic fields are below 1 µT. These magnetic fields are found near cables that provide electric power to office or apartment buildings, or around transformers associated with power supplies to buildings. The fields from these sources are generally well below the levels that cause any health concern.

Noise, Ozone and Corona

Noise in the form of a buzzing or humming sound may be heard around electrical transformers or high voltage power lines producing corona (see below). While the noise may be annoying, there are no EMF health consequences associated with these sounds.

Electrical devices such as photocopiers or any device using a high voltage to function may produce ozone, a colourless gas having a pungent smell. Electrical discharges in the air convert oxygen molecules into ozone. While people may easily smell the ozone, the concentrations produced around photocopiers and similar devices are well below health standards.

Corona or electrical discharges into the air are produced around high voltage power lines. It is sometimes visible on a humid night or during rainfall and can produce noise and ozone. Both the noise levels and ozone concentrations around power lines have no health consequence.

What should be done while research continues?

One of the objectives of the International EMF Project is to help national authorities weigh the benefits of using EMF technology against the detriment should any adverse health effects be demonstrated, and decide what protective measures, if any, may be needed. It will take some years for the required research to be completed, evaluated and published by WHO. In the meantime, WHO recommends:

Strict adherence to existing national or international safety standards: Such standards, based on current knowledge, are developed to protect everyone in the population.
Simple protective measures: Fences or barriers around strong ELF sources help preclude unauthorised access to areas where national or international exposure limits may be exceeded.
Consultation with local authorities and the public in siting new power lines: Obviously power lines must be sited to provide power to consumers. Despite the fact that ELF field levels around transmission and distribution lines are not considered a health risk, siting decisions are often required to take into account aesthetics and public sensibilities. Open communication and discussion between the electric power utility and the public during the planning stages can help create public understanding and greater acceptance of a new facility.
An effective system of health information and communication among scientists, governments, industry and the public can help raise general awareness of programmes to deal with exposure to ELF fields and reduce any mistrust and fears.

References for further reading

ICNIRP (1998) International Commission on Non-Ionizing Radiation Protection Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Physics 74(4), 494-522.

NIEHS (1998) Assessment of health effects from exposure to power-line frequency electric and magnetic fields. Portier CJ and Wolfe MS (eds) NIEHS Working Group Report, National Institute of Environmental Health Sciences of the National Institute of Health, Research Triangle Park, NC, USA, pp 523. Available from NIEHS

Repacholi M and Greenebaum B (1998) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics (In press). (Summary report of WHO scientific review meeting on static and ELF held in Bologna, 1997).

WHO (1997) WHO's Agenda for EMF Research. World Health Organization publication WHO/EHG/98.13, WHO Geneva. Also available on EMF web site

For more information contact:

Michael Repacholi
Telephone: (+41 22) 791 3427
Email: repacholim@who.int

http://www.who.int/mediacentre/factsheets/fs205/en/

Masalah Radiasi Tegangan Tinggi

Rencana pemerintah untuk meningkatan kesejahteraan rakyat melalui industrialisasi tampaknya merupakan suatu rencana yang patut didukung oleh semua pihak. Berbagai investasi dalam bidang industri pada saat ini telah banyak dilakukan oleh pihak swasta, baik melalui penanaman modal dalam negeri (PMDN) maupun melalui penanaman modal asing (PMA). Sedangkan dari pihak pemerintah sendiri rupanya juga sudah cukup banyak yang dikerjakan melalui sektor industri, antara lain melalui kiprah Badan Usaha Milik Negara (BUMN) yang tergabung dalam kelompok industri strategis (BPIS) dan juga melalui industri petrokimia, industri semen, industri logam dan industri berat lainnya. Tidak bisa dipungkiri bahwa semua kegiatan industri seperti di atas hanya dapat berjalan apabila tenaga listrik tersedia cukup memadai. Untuk mengatasi kebutuhan tenaga listrik tersebut, pihak pemerintah juga sudah memikirkannya antara lain melalui pembangunan pembangkit tenaga listrik berskala besar seperti yang ada di PLTU Suralaya (Jawa Barat), PLTU Paiton (Jawa Timur) dan PLTU Ujung Jati (Jawa Tengah) yang pada saat ini sedang dalam tahap pembangunan. Selain dari itu, pemerintah juga mengizinkan kepada pihak swasta untuk menanamkan modal dalam bidang penyediaan tenaga listrik daiam rangka pemenuhan kebutuhan listrik untuk industrialisasi. Hanya saja penjualan tenaga listrik yang dihasilkan oleh swasta kepada konsumen masih tetap melalui PLN sesuai dengan ketentuan perundangan yang berlaku.

Interkoneksi dan Transmisi Tenaga listrik

Pembangunan dalam sektor industri pada saat ini, sebenarnya merupakan kelanjutan pembangunan dari sektor-sektor lainnya yang telah dilakukan pada PJP I yang lalu. Pada PJP II ini pembangunan sektor industri diarahkan untuk menuju kepada kemandirian perekonomian nasional, meningkatkan kemampuan bersaing dan menaikkan pangsa pasar baik pangsa pasar dalam negeri maupun pangsa pasar luar negeri. Untuk dapat melakukan pembangunan sektor industri, masalah tenaga listrik merupakan salah satu faktor penentu yang harus diperhatikan dengan cermat. Kenaikan penyediaan tenaga listrik (daya terpasang kumulatif) sejak awal Pelita I sampai dengan akhir PJP I yang lalu, tampaknya merupakan indikasi keseriusan pemerintah untuk melakukan pembangunan sektor industri, seperti yang tampak pada grafik (terlampir).

Ketersediaan tenaga listrik selama PJP I yang meningkat pesat dengan laju pertumbuhan rata-rata 12,4 % per tahun dan pada akhir PJP I meningkat menjadi 17,5 % per tahun melebihi angka yang direncanakan yaitu 14,6 % per tahun. Laju pertumbuhan konsumsi tenaga listrik di Indonesia ternyata di atas angka rata-rata di Asia yang hanya sekitar 7,9 % per tahun dan jauh di atas rata-rata petumbuhan konsumsi tenaga listrik dunia yang hanya sekitar 3,6 % per tahun. Laju pertumbuhan tenaga listrik yang tinggi ini dapat dicapai dengan mengembangkan sistem jaringan terpadu.

Pengembangan sistem jaringan terpadu meliputi sistem interkoneksi pusat-pusat pembangkit tenaga listrik yang ada serta membangun sistem transmisi dari pusat pembangkit ke gardu induk. Pada saat ini interkoneksi di Indonesia baru dilaksanakan di Pulau Jawa, yaitu dengan sistem tegangan tinggi (75 kV dan 150 kV) serta tegangan ekstra tinggi (500 kV) yang menghubungkan beberapa PLTA dan PLTU yang terdapat di Jawa Barat, Jawa Tengah dan Jawa Timur, yaitu antara pusat pembangkit di Suralaya, Saguling, Semarang, Gresik dan Paiton. Sedangkan sistem distribusi (penyaluran) di Indonesia saat ini menggunakan tegangan 20 kV untuk primer dan 220/380 V untuk sekunder dengan frekuensi 50 Hz. Tujuan dari sistem interkoneksi dan transmisi secara terpadu ini antara lain untuk meningkatkan kemampuan suplai tenaga listrik, agar pada saat terjadi gangguan pada salah satu pusat pembangkit tidak terlalu berpengaruh pada konsumen. Sebagai contoh gangguan adalah pada PLTA yang sangat dipengaruhi oleh debit air, tandon air, limpahan dan daya muatnya. Sedangkan pada PLTU gangguan dapat berasal dari efisiensi kerja ketel uap, turbin dan sistem peralatan lainnya.

Sistem interkoneksi dan transmisi tersebut sering pula dinamakan dengan sistem Saluran Udara Tegangan (Ekstra) Tinggi yang sering disingkat dengan SUTET. Sistem interkoneksi dan transmisi tersebut saat ini memang harus dilakukan agar sistem jaringan terpadu dalam rangka pemenuhan kebutuhan tenaga listrik dapat dicapai. Namun dengan meningkatnya kesadaran masyarakat tentang masalah keselamatan kerja dan keselamatan lingkungan, maka masalah interkoneksi dan transmisi (SUTET) dengan tegangan tinggi atau ekstra tinggi menjadi suatu persoalan yang harus diperhatikan dengan cermat apabila jaringan tegangan tinggi tersebut melewati daerah permukiman. Kasus jaringan tegangan tinggi yang melewati daerah Gresik dan daerah Parung kiranya dapat menjadi pelajaran yang menarik untuk perencanaan interkoneksi dan transmisi pada masa mendatang. Apa yang menyebabkan masyarakat menjadi cemas bila daerahnya dilewati jaringan tegangan tinggi, tidak lain adalah karena rasa khawatir dan takut terkena radiasi tegangan tinggi. Apa sebenarnya radiasi tegangan tinggi tersebut akan dibahas pada uraian berikut ini.

Apakah Radiasi Tegangan Tinggi itu?

Masalah radiasi tegangan tinggi sebenamya sudah sejak lama dipikirkan oleh para ahli, paling tidak semenjak James Clark Maxwell mengumumkan teorinya tentang :A dynamic theory of the electromagnetic field, suatu teori revolusioner tentang pergeseran arus yang diramalkan dapat menimbulkan gelombang elektromagnet yang merambat dengan kecepatan cahaya. Pada waktu teori tersebut diumumkan (tahun 1865) Maxwell belum menyebutnya sebagai suatu radiasi seperti yang kita kenal saat ini. Secara teoritis elektron yang membawa arus listrik pada jaringan tegangan tinggi akan bergerak lebih cepat bila perbedaan tegangannya makin tinggi. Elektron yang membawa arus listrik pada jaringan interkoneksi dan juga pada jaringan transmisi, akan menyebabkan timbulnya medan magnet maupun medan listrik. Elektron bebas yang terdapat dalam udara di sekitar jaringan tegangan tinggi, akan terpengaruh oleh adanya medan magnet dan medan listrik, sehingga gerakannya akan makin cepat dan hal ini dapat menyebabkan timbulnya ionisasi di udara. Ionisasi dapat terjadi karena elektron sebagai partikel yang bermuatan negatif dalam gerakannya akan bertumbukan dengan molekul-molekul udara sehingga timbul ionisasi berupa ion-ion dan elektron baru. Proses ini akan berjalan terus selama ada arus pada jaringan tegangan tinggi dan akibatnya ion dan elektron akan menjadi berlipat ganda terlebih lagi bila gradien tegangannya cukup tinggi. Udara yang lembab karena adanya pepohon di bawah jaringan tegangan tinggi akan lebih mempercepat terbentuknya pelipatan ion dan elektron yang disebut dengan avalanche. Akibat berlipatgandanya ion dan elektron ini (peristiwa avalanche) akan menimbulkan koronaberupa percikan busur cahaya yang seringkali disertai pula dengan suara mendesis dan bau khusus yang disebut dengan bau ozone. Peristiwa avalanche dan timbulnya korona akibat adanya medan magnet dan medan listrik pada jaringan tegangan tinggi inilah yang sering disamakan dengan radiasi gelombang elektromagnet atau radiasi tegangan tinggi.

Berbahayakah Radiasi Tegangan Tinggi itu?

Secara umum setiap bentuk radiasi gelombang elektromagnet dapat berpengaruh terhadap tubuh manusia. Sel-sel tubuh yang mudah membelah adalah bagian yang paling mudah dipengaruhi oleh radiasi. Tubuh yang sebagian besar berupa molekul air, juga mudah mengalami ionisasi oleh radiasi. Seberapa jauh pengaruhnya terhadap tubuh manusia, tergantung pada batas-batas aman yang diizinkan. Sebagai contoh untuk radiasi nuklir yang aman bagi manusia (untuk pekerja radiasi) adalah dosis di bawah 5000 mili Rem per tahun, sedangkan untuk masyarakat umum adalah 10 % dari harga tersebut. Lantas bagaimanakah dengan batasan aman untuk radiasi tegangan tinggi?

Sejauh ini batasan aman untuk radiasi tegangan tinggi masih terus diteliti dan para ahli di seluruh dunia masih belum sampai kepada kata sepakat tentang batasan aman tersebut. Penelitian pengaruh radiasi tegangan tinggi sejauh ini baru diketahui akibatnya terhadap binatang percobaan di laboratorium. Radiasi tegangan tinggi (radiasi elektromagnet) ternyata mempengaruhi sifat kekebalan (imun) tikus-tikus percobaan. Apakah radiasi tegangan tinggi juga bersifat cocarcinogenik (merangsang timbulnya kanker), ternyata masih dalam taraf dugaan saja, karena tikus-tikus percobaan yang dikenai radiasi tegangan tinggi tidak ada yang menjadi terserang kanker, walaupun diramalkan kemungkinan terkena kanker dapat meningkat karenanya. Memang terdapat perbedaan antara manusia dan tikus, sehingga penelitian terhadap tikus-tikus tersebut mungkin lain hasilnya terhadap manusia. Walaupun demikian, usaha manusia untuk mengurangi dampak teknologi berupa jaringan interkoneksi dan transmisi tegangan tinggi yang dapat menimbulkan kemungkinan terkena radiasi tegangan tinggi tetap perlu dilakukan, agar diperoleh kepastian mengenai harga batas aman bagi manusia.

Satuan untuk mengukur radiasi tegangan tinggi tidaklah sama dengan satuan untuk radiasi nuklir yang menggunakan satuan REM, singkatan Rontgen Equivalent of Man. Satuan radiasi tegangan tinggi masih menggunakan satuan Weber/meter2, yaitu satuan flux dalam sistem mks. Mengingat bahwa l Weber/m2 sama dengan 104 gauss, sedangkan satuan untuk induksi magnetik telah ditentukan dengan satuan Tesla yang besarnya sama dengan 104 gauss, maka satuan radiasi tegangan tinggi dapat juga menggunakan satuan Tesla yang identik dengan Weber/m2.

Walaupun belum ada kata sepakat untuk menentukan batas aman bagi radiasi tegangan tinggi, namun Amerika Serikat sebagai negara industri yang banyak menggunakan jaringan tegangan tinggi, telah menetapkan batas aman sebesar 0,2 mikro Weber/m2. Sedangkan Rusia (bekas Uni Sovyet) menetapkan batas aman radiasi tegangan tinggi dengan faktor 1000 lebih rendah dari yang telah ditetapkan Amerika Serikat. Adanya perbedaan penetapan batas aman ini disebabkan karena penelitian mengenai dampak radiasi tegangan tinggi terhadap manusia masih belum selesai dan masih terus dilakukan. Hal menarik dari penentuan harga batas aman tersebut adalah bahwa Amerika Serikat yang menetapkan harga batas aman tersebut adalah Radiation Protection Board, sedangkan di Rusia oleh Ministry Of Health (Departemen Kesehatan), sedangkan di Australia oleh Australian Radiation Protection Society (ARPS), suatu lembaga non pemerintah. Lantas bagaimanakah dengan di Indonesia? Siapakah yang akan menetapkan harga batas aman radiasi tegangan tinggi? Apakah BATAN, apakah Departemen Perindustrian, apakah Departemen Kesehatan, apakah Menteri Negara Lingkungan Hidup ataukah pihak PLN sendiri yang banyak berkaitan dengan masalah jaringan tegangan tinggi. Masalah ini kiranya perlu segera ditetapkan, mengingat bahwa PLN masih akan membangun jaringan tegangan tinggi sebagai interkoneksi dan transmisi sepanjang 2000 km. Mudah-mudahan penetapan batas aman radiasi tegangan tinggi di Indonesia berdasarkan pertimbangan yang matang, sehingga masyarakat tidak menjadi takut dan khawatir bila daerahnya akan dilewati jaringan tegangan tinggi. Selain dari itu, penjelasan yang transparan dari pihak PLN kepada masyarakat perlu diberikan, agar program interkoneksi dan transimisi dapat berjalan lancar, sehingga program pembangunan sektor industri dapat dilaksanakan dengan sebaik-baiknya yang pada akhirnya kesejahteraan masyarakat diharapkan akan dapat meningkat. Semoga.

Ir. Wisnu Arya Wardhana, adalah Widyaiswara BATAN, pengamat dan penulis masalah lingkungan, tinggal di Yogyakarta.
Drs. Supriyono MSc., adalah peneliti BATAN, dosen PATN, tinggal di Yogyakarta.
Ir. Djiwo Harsono MEng., dosen PATN, tinggal di Yogyakarta.

http://www.elektroindonesia.com/elektro/energi8e.html

Pengukuran Medan Listrik dan Medan Magnet di bawah SUTET 500kV

Pengukuran Medan Listrik dan Medan Magnet di bawah SUTET 500kV

Sampai sekarang masyarakat masih khawatir tinggal di bawah Saluran Udara Tegangan Ekstra Tinggi (SUTET) 500 kV. Ketakutan ini tampaknya berawal dari pernyataan ahli Epidemiologi bahwa SUTET dapat membangkitkan medan listrik dan medan magnet yang berpengaruh buruk terhadap kesehatan manusia. Masyarakat bahkan ada yang mengeluh pusing-pusing walaupun belum dapat dibuktikan penyebabnya. Kehadiran medan listrik dan medan magnet di sekitar kehidupan manusia tidak dapat dirasakan oleh indera manusia, kecuali jika intensitasnya cukup besar dan terasa hanya bagi orang yang hipersensitif saja. Medan listrik dan medan magnet termasuk kelompok radiasi non-pengion. Radiasi ini relatif tidak berbahaya, berbeda sama sekali dengan radiasi jenis pengion seperti radiasi nuklir atau radiasi sinar rontgen.

Medan listrik dan medan magnet sudah ada sejak bumi kita ini terbentuk. Awan yang mengandung potensial air, terdapat medan listrik yang besarnya antara 3000 - 30.000 V/m. Demikian juga bumi secara alamiah bermedan listrik (100 - 500 V/m) dan bermedan magnet (0,004 - 0,007 mT). Di dalam rumah, di tempat kerja, di kantor atau di bengkel terdapat medan listrik dan medan magnet buatan. Medan listrik dan medan magnet ini biasanya berasal dari instalasi dan peralatan listrik antara lain berasal dari: sistem instalasi dalam rumah, lemari pendingin, AC, kipas angin, pompa air, televisi, mesin tik elektronik, mesin photocopy, komputer danprinter, mesin las, kompresor, saluran udara tegangan rendah/menengah (SUTR/M) yang berdekatan, dan lain-lain. Pada sistem instalasi yang bertegangan dan berarus selalu timbul medan listrik. Tetapi medan listrik ini sudah melemah karena jaraknya cukup jauh dari sumber.

Di bawah SUTR dan SUTM kuat medan magnet bervariasi antara 0,1 – 3,5 mikrotesla. Di dalam bangunan rumah, kantor, bengkel atau pabrik, medan magnet karena saluran udara ini jauh lebih lemah lagi. Diusahakan dalam pemilihan jalur SUTET tidak melintas daerah pemukiman, hutan lindung maupun cagar alam. Di beberapa daerah pemukiman yang padat mungkin tidak bisa dihindari jalur SUTET untuk melintas, tetapi baik medan listrik maupun medan magnet tidak boleh diatas ambang batas yang diperbolehkan. Medan Listrik di bawah jaringan dapat menimbulkan beberapa hal, antara lain:
menimbulkan suara/bunyi mendesis akibat ionisasi pada permukaan penghantar (konduktor) yang kadang disertai cahaya keunguan, bulu/rambut berdiri pada bagian badan yang terpajan akibat gaya tarik medan listrik yang kecil, lampu neon dan tes-pen dapat menyala tetapi redup, akibat mudahnya gas neon di dalam tabung lampu dan tes-pen terionisasi, kejutan lemah pada sentuhan pertama terhadap benda-benda yang mudah menghantar listrik (seperti atap seng, pagar besi, kawat jemuran dan badan mobil).

Hubungan Medan Listrik dan Medan Magnet dengan Kesehatan

Kekhawatiran akan pengaruh buruk medan listrik dan medan magnet terhadap kesehatan dipicu oleh publikasi hasil penelitian yang dilakukan oleh Wertheimer dan Leeper pada tahun 1979 di Amerika. Penelitian tersebut menggambarkan adanya hubungan kenaikan risiko kematian akibat kanker pada anak dengan jarak tempat tinggal yang dekat jaringan transmisi listrik tegangan tinggi. Banyak ahli yang meragukan hasil penelitian tersebut dengan menunjuk berbagai kelemahannya, antara lain tidak adanya data hasil pengukuran kuat medan listrik dan medan magnet yang mengenai kelompok anak-anak yang diteliti. Koreksi yang dilakukan oleh peneliti lainnya seperti yang dilakukan oleh Savitz dan kawan-kawan serta temuan studi Fulton dan kawan-kawan, ternyata hubungan tersebut tidak ada. Hasil penelitian dengan metoda yang lebih disempurnakan pernah dilakukan oleh Maria Linett dan kawan-kawan dari National Cancer Institute -Amerika tahun 1997. Penelitian yang melibatkan lebih kurang 1200 anak ini melaporkan bahwa tidak ada hubungan antara kejadian leukemia pada anak yang terpajan medan listrik dan medan magnet dengan anak-anak yang tidak terpajan. Temuan ini mengukuhkan penolakan terhadap hasil penelitian yang dilakukan oleh Wertheimer dan Leeper tersebut.

Penelitian dengan menggunakan hewan percobaan pernah dilakukan sejak tahun 60-an dengan hasilnya bervariasi mulai dari gambaran yang tidak berpengaruh, adanya perubahan perilaku sampai pada pengaruh terjadinya cacat pada keturunan. Sesungguhnya hasil penelitian pada hewan yang menunjukkan adanya pengaruh buruk tersebut diakibatkan oleh penggunaan kuat medan listrik atau medan magnet yang sangat besar dalam percobaan tersebut. Percobaan dengan kuat medan listrik dan medan magnet sampai pada tingkat yang menghasilkan kelainan tersebut memang diperlukan untuk mengetahui proses terjadinya gangguan tertentu sehingga dapat dipergunakan sebagai dasar penanggulangannya. Kuat medan listrik dan medan magnet yang digunakan pada percobaan tersebut hampir mustahil dapat dihasilkan dan terjadi di lingkungan sekitar kehidupan manusia. Pengaruh medan listrik dan medan magnet terhadap kesehatan sangat tergantung pada dosis yang diterimanya. Dosis yang kecil tentu tidak akan berpengaruh, bahkan penelitian yang dilakukan oleh Piekarsi dari negara bekas Uni Sovyet menunjukkan efek positif terhadap penyambungan tulang yang patah pada anjing percobaan.

Para ahli telah sepakat bahwa medan listrik dan medan magnet yang berasal dari jaringan listrik digolongkan sebagai frekuensi ekstrim rendah dengan konsekuensi kemampuan memindahkan energi sangat kecil, sehingga tidak mampu mempengaruhi ikatan kimia pembentuk sel-sel tubuh manusia. Disamping itu sel tubuh manusia mempunyai kuat medan listrik sekitar 10 juta Volt/m yang jauh lebih kuat dari medan listrik luar. Medan listrik dan medan magnet dengan frekuensi ekstrim rendah ini juga tidak mungkin menimbulkan efek panas seperti yang dapat terjadi pada efek medan elektromagnet gelombang mikro, frekuensi radio, dan frekuensi yang lebih tinggi seperti pada telepon seluler. Adanya sementara orang yang tinggal dekat dengan jaringan transmisi listrik melaporkan keluhan-keluhan seperti sakit kepala, pusing, berdebar dan susah tidur serta kelemahan seksual adalah bersifat subyektif, karena persepsi mereka yang kurang tepat.

Batas Pajanan Medan Listrik dan Medan Magnet

Kriteria yang dipakai dalam penentuan batas pajanan menggunakan rapat arus yang diinduksi dalam tubuh. Karena arus-arus induksi dalam tubuh tidak dapat dengan mudah diukur secara langsung maka penentuan batas pajanan diturunkan dari nilai kriteria arus induksi dalam tubuh berupa kuat medan listrik (E) yang tidak terganggu dan rapat fluks magnetik (B). Gampangnya misalnya saja suatu medan listrik yang homogen dengan kuat medan sebesar 10 kV/m akan menginduksi rapat arus efektif kurang dari 4 mA/m2 dengan rata-rata pengaliran arus di seluruh daerah kepada atau batang tubuh manusia (Berhardt, 1985 dan Kaune & Forsythe, 1985). Suatu rapat fluks magnetik sebesar 0.5 mT pada 50/60 Hz akan menginduksi rapat arus efektif sekitar 1 mA/m2 pada keliling suatu loop jaringan tubuh yang berjejari 10 cm. UNEP, WHO dan IRPA pada tahun 1987 mengeluarkan suatu pernyataan mengenai nilai rapat arus induksi terhadap efek-efek biologis yang ditimbulkan akibat pajanan medan listrik dan medan magnet pada frekuensi 50/60HZ terhadap tubuh manusia sebagai berikut : antara 1 dan 10 mA/m2 tidak menimbulkan efek biologis yang berarti, antara 10 dan 100 mA/m2 menimbulkan efek biologis yang terbukti termasuk efek pada sistem penglihatan dan syaraf, antara 100 dan 1000 mA/m2 menimbulkan stimulasi pada jaringan-jaringan yang dapat dirangsang dan ada kemungkinan bahaya terhadap kesehatan dan, di atas 1000 mA/m2 dapat menimbulkan ekstrasistole dan fibrasi ventrikular dari jantung (bahaya akut terhadap kesehatan).

Pengukuran Kuat medan Listrik SUTET 500 kV

Pengukuran medan listrik di bawah jaringan SUTET 500 kV sebagai fungsi jarak telah dilakukan dilapangan terbuka tanpa pepohonan pada andongan terendah di 4 lokasi di Ciledug, Cirata, Ungaran dan Gresik. Kuat medan yang diperoleh untuk Ciledug mencapai angka maksimum 4 kV/m pada titik dibawah konduktor phasa sejarak 10 meter dari pusat sumbu saluran, Cirata mencapai angka maksimum 17 kV/m pada titik sejarak 5 m, Ungaran mencapai angka maksimum 4,78 kV/m pada titik sejarak 15 m, dan Gresik mencapai angka maksimum 3,32 kV/m pada titik sejarak 20 m. Kuat medan listrik pada titik tengah antara dua deretan konduktor phasa diperoleh lebih kecil, dimana hal tersebut diakibatkan oleh penjumlahan vektoral medan listrik yang ditimbulkan oleh susunan konfigurasi konduktor phasa. Untuk konfigurasi yang lainnya diperoleh keadaan kuat medan listrik yang sedikit lebih tinggi. Menurut IRPA dan WHO, batasan pajanan kuat medan listrik yang diduga dapat menimbulkan efek biologis untuk umum adalah 5 kV/m, sedang hasil pengukuran dilapangan terbuka terhadap kuat medan listrik di bawah SUTET mencapai angka maksimum 4.78 kV/m (di Ungaran) pada titik sejarak 15 m, kecuali didaerah Cirata mencapai 17 kV/m tetapi ini merupakan tempat tebing dan curam yang tidak dilalui penduduk.

Pengukuran kuat medan Listrik di dalam rumah juga dilakukan di 3 lokasi pada posisi listrik hidup, dengan hasil pengukuran sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 kV/m; desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 kV/m; dan perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 kV/m. Kuat medan listrik di dalam rumah dalam posisi listrik menyala memperlihatkan harga yang kecil. Hal ini disebabkan oleh adanya redaman rumah terhadap pajanan medan listrik. Sedangkan pengukuran kuat medan listrik pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.

Kuat Medan Magnet SUTET 500 KV

Pengukuran kuat medan magnet dilakukan di lapangan terbuka tanpa adanya pengaruh keberadaan pohon-pohonan, rumah serta obyek-obyek lain. Pengukuran kuat medan untuk Ciledug mencapai angka maksimum 0,0021 mili Tesla dititik 0 meter (sejajar tower), Cirata mencapai angka maksimum 0,036 mili Tesla pada titik sejarak 0 m, Ungaran mencapai angka maksimum 0,00180 mili Tesla pada titik sejarak 0 m, sedang Gresik mencapai angka maksimum 0,0021 mili Tesla pada titik sejarak 0 m. Menurut IRPA dan WHO, batasan pajanan kuat medan magnet yang diduga dapat menimbulkan efek biologis untuk umum adalah 0,5 mili Tesla, sedang seperti diuraikan diatas kuat medan magnet di bawah SUTET 500 kV dilapangan terbuka mencapai harga maksimum 0,036 mili Tesla (di Cirata) pada titik 0 m sejajar tower. Jadi masih sangat jauh dibawah ambang batas yang ditetapkan. Pengukuran kuat medan magnet di tiga lokasi dilakukan pada posisi listrik nyala, diperoleh hasil sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 mili Tesla; di desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 mili Tesla; dan di perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 mili Tesla. Pengukuran kuat medan magnet di dalam rumah dengan posisi listrik nyala memperlihatkan harga yang kecil. Hal ini, sama seperti pada kasus pengukuran medan listrik, disebabkan pula oleh adanya redaman rumah terhadap pajanan medan magnet. Demikian juga pengukuran kuat medan magnet pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.

Pedoman Teknis Pengurangan Dampak Medan Listrik dan Medan Magnet

Dari penelitian yang sudah dilakukan ditemukan kuat medan listrik di halaman/luar rumah lebih tinggi dibandingkan dengan di dalam rumah, sehingga dalam rangka peningkatan kondisi lingkungan akibat adanya SUTET perlu diperhatikan hal-hal sebagai berikut : mengusahakan agar rumahnya berlangit-langit, menanam popohonan sebanyak mungkin disekitar rumah pada lahan yang kosong, bagian atap rumah terbuat dari atap logam, seharusnya ditanahkan (digroundkan), penduduk disarankan tidak berada diluar rumah terutama pada malam hari, karena pada saat itu arus yang mengalir pada kawat penghantar SUTET lebih tinggi dari pada siang hari.

Pengamanan terhadap arus peluahan elektrostatis perlu dilakukan untuk menghindari adanya pengutupan muatan yang akan terjadi pada benda terbuat dari bahan logam. Caranya yaitu dengan mentanahkan agar terjadi penetralan kembali semua benda terbuat dari bahan logam dengan ukuran cukup besar (contohnya kawat jemuran, kabal interkom, mobil dan sepeda motor), yang terletak dibawah SUTET. Hal ini dikarenakan untuk menghindari adanya pengutupan muatan yang akan terjadi pada objek tersebut, dengan mentanahkan maka akan terjadi penetralan kembali. Akibat adanya arus peluahan ini pengamanan yang harus dilakukan oleh penduduk adalah: disarankan tidak membuat jemuran yang atasnya bebas sama sekali dari pepohonan; disarankan membuat jemuran bukan berasal dari kawat dan tiang besi, (contoh : kayu, bambu, tali plastik) dan kalau terpaksa membuat jemuran yang menggunakan bahan konduktor maka harus di tanahkan; saluran interkom harus jauh dari SUTET; bila atap bukan dari bahan logam (genting, asbes, sirap) maka usahakan atap tersebut tidak terdapat bahan logam (misalnya antena TV, talang seng); jangan memasang antena TV atau radio (ORARI)di atap rumah; usahakan kendaraan bermotor (mobil, sepeda motor dll) ditanahkan untuk menghilangkan medan elektrostatis akibat induksi SUTET; usahakan tidak terdapat bahan-bahan yang bersifat konduktor berada di teras rumah yang bertingkat di bawah SUTET; Sering mungkin melakukan pengukuran tegangan dengan testpen pada objek yang dicurigai bertegangan.

Pengamanan Terhadap Induksi Tegangan Lebih Transien Pada Peralatan Listrik dapat dilaksanakan dengan pemasangan titik nol yang ditanahkan. Tegangan induksi pada peralatan di bawah SUTET aman bagi manusia.

Pengamanan Terhadap Tegangan Langkah dan Tegangan Sentuh disarankan penduduk agar masyarakat tidak masuk didalam daerah sekitar pentanahan kaki menara yang telah diberi pagar oleh PLN.

Pengamanan Terhadap Bahaya Putusnya Kawat Saluran Transisi dilakukan agar pemukiman yang dilintasi SUTET perlu ditanami pepohonan, tetapi perlu di pantau ketinggiannya dan batas-batas ruang bebas, yaitu puncak pohon berjarak minimum 15 M dari kabel SUTET terbawah. Bahaya putusnya kawat SUTET belum pernah dijumpai, yang dijumpai adalah pecahnya isolator, oleh sebab itu digunakan isolator ganda dan dengan tanaman pohon dibawah SUTET yang dipantau ketinggiannya maka bahaya seandainya kawat SUTET putus dapat dieleminir.

Pengamanan terhadap loncatan listrik keinstalasi diatas atap bangunan diadasarkan pada Peraturan Menteri Pertambangan dan Energi No. 01.P/47/MPE/1992, yaitu agar jarak minimum titik tertinggi bangunan (pohon) terhadap titik terendah kawat penghantar SUTET 500 kV harus memenuhi ketentuan sbb : Jarak minimum titik tertinggi bangunan tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum titik tertinggi jembatan besi titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum jalan kereta api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum lapangan terbuka terhadap titik terendah kawat penghantar SUTET 500 kV adalah 11 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum jalan raya terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m. Ruang bebas adalah ruang sekeliling penghantar yang dibentuk oleh jarak bebas minimum sepanjang SUTT atau SUTET yang didalam ruang itu harus dibebaskan dari benda-benda dan kegiatan lainnya. Ruang bebas ditetapkan berdeda-beda dalam luas dan bentuk. Sementara ruang aman adalah ruang yang berada di luar ruang bebas. Lahan atau tanahnya yang masih dapat dimanfaatkan. Dalam ruang aman pengaruh kuat medan listrik dan kuat medan magnet sudah dipertimbangkan dengan mengacu kepada peraturan yang berlaku. Ruang bebas dan ruang aman dapat diatur besarnya sesuai kebutuhan pada saat mempersiapkan rancangbangun. Ruang aman dapat diperluas dengan cara meninggikan menara dan atau mempendek jarak antara menara, sehingga bila ada pemukiman yang akan dilintasi SUTT / SUTET yang akan dibangun berada di dalam ruang yang aman.

Sumber Laporan Evaluasi Teknis dan Sosialisasi pada Masyarakat tentang Dampak Medan Listrik dan Medan Magnet di Bawah SUTT/SUTET, Proyek Penelitian Teknologi Energi dan Ketenagalistrikan, Ditjen Listrik dan Pengembngan Energi)

Oleh Ir. Nanan Tribuana adalah staf Ditjen Listrik dan Pengembngan Energi, Jakarta

http://www.elektroindonesia.com/elektro/ener32a.html

Kontroversi Saluran Tegangan Tinggi

Beberapa minggu yang lalu merebak kontroversi tentang SUTET (Saluran Udara Tegangan Ekstra Tinggi). Inti dari kontroversi tersebut adalah sebuah pertanyaan apakah SUTET berbahaya bagi kesehatan penduduk yang tinggal di sekitarnya atau tidak. Ada sebagian penelitian yang mengatakan bahwa tinggal di sekitar lokasi SUTET dapat menyebabkan kanker dan leukemia, tetapi tidak sedikit penelitian yang mengatakan hal tersebut sama sekali tidak berbahaya.

Mana yang benar? Informasi paling komprehensif tentang bahaya saluran tegangan tinggi di Internet dapat diperoleh dari Power Lines and Cancer FAQs yang dibuat oleh Dr. John Moulder, seorang peneliti di Medical College of Wisconsin. Tak kurang dari 520 buah hasil penelitian telah ditelaah oleh Dr. John Moulder untuk keperluan membuat FAQ tersebut.

Dari sekian banyak penelitian yang ia pelajari, John Moulder menyimpulkan bahwa tidak ada korelasi antara kanker dan saluran tegangan tinggi.

Some studies have reported that children living near certain types of power lines (high-current distribution lines and high-voltage transmission lines) have higher than average rates of leukemia, brain cancers and/or overall cancer. The correlations are not strong, and the studies have generally not shown dose-response relationships. When power-frequency fields are actually measured, the association generally vanishes. Many other studies have shown no correlations between residence near power lines and risks of childhood leukemia , childhood brain cancer , or overall childhood cancer.

All but one of the newer studies of powerlines and either childhood leukemia or brain cancer have failed to show significant associations. The exception is a Canadian study which showed an association between the incidence of childhood leukemia and some measures of exposure.

With two exceptions all studies of correlations between adult cancer and residence near power lines have been negative. The exception are Wertheimer et al who reported an excess of total cancer and brain cancer, but no excess of leukemia; and Li et al who reported excess leukemia, but no excess breast cancer or brain cancer.

Di akhir dokumen ini, Moulder mencoba menjawab apakah ada resiko tinggal dekat dengan saluran tegangan tinggi. Jawabannya:

No absolute answers can be provided, but certain general conclusions can be drawn from the existing science:

There is a broad consensus in the scientific community that no causal association has been established between residential or occupational exposure to power-frequency fields, and human health hazards (including cancer).

There is a broad consensus that exposure to these fields has not been, and cannot be proven to be absolutely safe.

There is also a broad consensus that if there is a human health hazard, it is either very small or restricted to small subgroups; that is, that the possibility of a large and general hazard has been ruled out.

Regardless of the science, the public controversy remains. This is seen in the continuing litigation over cancers that are alleged to have been caused by exposure to power-frequency fields, and by the public opposition that meets almost all attempts to site or upgrade power lines. The public concern is sustained by uneven reporting on this issue by the mass media, by the inability of scientists to guarantee that no risk exists, and by statements from scientists and government officials that more research is needed. This public concern is further encouraged by lay-oriented books that allege that there has been a conspiracy to conceal the health risks of power-frequency fields [L11].

Sepertinya kondisi di Indonesia tidak jauh berbeda dengan di luar negeri. Kontroversi aman atau tidaknya saluran tegangan tinggi juga tidak jauh berbeda, ada penelitian yang mendukung, dan juga penelitian yang tidak mendukung teori tersebut. Dan tentunya publik dan media massa cenderung lebih menyukai penelitian yang mendukung korelasi tersebut.

Penelitian yang paling sering dimuat media massa adalah hasil penelitian Dr. dr. Anies, M.Kes. bahwa resiko penduduk yang tinggal dekat SUTET lebih besar 5.8 kali daripada penduduk lainnya. Penelitian ini dituangkan pada buku karangannya Electrical Sensitivity. Sedangkan pendapat yang berlawanan diberikan oleh Corrie Wawolumaya.

Yang menarik adalah artikel Pikiran-Rakyat yang berjudul SUTET dan Perlindungan HAM:

Menurut WHO, potensi gangguan kesehatan yang timbul akibat SUTET 500 kV, dapat terjadi pada sistem: (1) darah, (2) reproduksi, (3) syaraf, (4) kardiovaskuler, (5) endokrin, (6) psikologis, dan (7) hipersensitivitas.

Saya tidak tahu sumber informasi tersebut, tetapi yang jelas WHO dalam halaman Electromagnetic fields and public health: extremely low frequency (ELF) mengatakan:

Available evidence suggests that, apart from stimulation arising from electric charge induced on the surface of the body, the effects of exposures of up to 20 kV/m are few and innocuous. Electric fields have not been shown to have any effect on reproduction or development in animals at strengths over 100 kV/m.

There is little confirmed experimental evidence that ELF magnetic fields can affect human physiology and behaviour at field strengths found in the home or environment. Exposure of volunteers for several hours to ELF fields up to 5 mT had little effect on a number of clinical and physiological tests, including blood changes, ECG, heart rate, blood pressure, and body temperature.

Sedangkan menurut artikel ElektroIndonesia Pengukuran Medan Listrik dan Medan Magnet di Bawah SUTET 500kVA mengatakan:

Menurut IRPA dan WHO, batasan pajanan kuat medan listrik yang diduga dapat menimbulkan efek biologis untuk umum adalah 5 kV/m, sedang hasil pengukuran dilapangan terbuka terhadap kuat medan listrik di bawah SUTET mencapai angka maksimum 4.78 kV/m (di Ungaran) pada titik sejarak 15 m, kecuali didaerah Cirata mencapai 17 kV/m tetapi ini merupakan tempat tebing dan curam yang tidak dilalui penduduk.

Menurut IRPA dan WHO, batasan pajanan kuat medan magnet yang diduga dapat menimbulkan efek biologis untuk umum adalah 0,5 mili Tesla, sedang seperti diuraikan diatas kuat medan magnet di bawah SUTET 500 kV (sic) dilapangan terbuka mencapai harga maksimum 0,036 mili Tesla (di Cirata) pada titik 0 m sejajar tower.

Artinya, menurut hasil pengukuran ElektroIndonesia dan hasil penelitian WHO tersebut, SUTET 500 kVA masih aman karena masih di bawah ambang yang diujikan oleh WHO.

Seperti yang dikatakan oleh John Moulder kontroversi ini rasanya akan terus berlanjut sampai ada penelitian yang membuktikan medan listrik dan medan magnet berbahaya, atau masyarakat belajar jika sains tidak dapat memastikan amannya kasus ini, atau sampai masyarakat dan media bosan dengan topik ini. Dua yang pertama kemungkinan tidak akan terjadi sedangkan yang terakhir bisa saja terjadi.

Saya sendiri secara pribadi tidak memiliki kemampuan untuk menyimpulkan apakah SUTET berbahaya bagi kesehatan atau tidak, dan mungkin pada saat ini kita tidak akan dapat mencapai kesimpulan apapun. Walaupun demikian saya tetap melihat bahwa isu ini sangat rentan untuk dipolitisasi maupun dimanfaatkan oleh pihak-pihak tertentu, terutama jika kejadian yang diberitakan oleh PLN memang benar terjadi.

Sumber: http://priyadi.net/archives/2006/03/09/kontroversi-salurantegangan-
tinggi

Ada Kehidupan di Bawah Kabel Besar

Medan magnet berfrekuensi rendah akan menimbulkan lingkaran arus listrik dalam tubuh manusia.

JAKARTA -- Medan magnet berfrekuensi rendah akan menimbulkan lingkaran arus listrik dalam tubuh manusia. Besarnya arus listrik yang ditimbulkan akan sangat bergantung pada kuatnya medan magnet yang ada, dan jika terlalu besar, arus listrik itu dapat menimbulkan rangsangan pada sistem saraf dan otot.

Mulanya mungkin sistem penglihatan. Tapi semakin besar induksi arus listrik itu bisa berbahaya bagi jaringan hingga akhirnya akut, seperti ekstrasistol dan ventrikuler jantung yang tergetar. Itu sebabnya, bagi sebagian masyarakat, saluran udara tegangan ekstratinggi (SUTET) adalah momok.

Jaringan listrik itu memang mampu membangkitkan medan listrik dan medan magnet. Desis konduktornya, rambut yang berdiri pada bagian badan tertentu ketika berada di dekatnya, atau mungkin lampu neon dan test-pen yang menyala redup adalah bukti adanya paparan atau pajanan medan elektromagnet itu.

Sekarang problemnya, apakah SUTET, yang menjadi bagian dari sistem transmisi listrik sejauh lebih dari 2.300 kilometer milik PT Perusahaan Listrik Negara, benar bisa sebahaya di atas? "Dari penelitian yang kami lakukan sepuluh tahun lalu, tidak," kata Corrie Wawolumaya dari Bagian Ilmu Kedokteran Komunitas Fakultas Kedokteran Universitas Indonesia di sela-sela "Diskusi Panel tentang Permasalahan Penggunaan SUTET dalam Sistem Ketenagalistrikan di Indonesia" di gedung Badan Pengkajian dan Penerapan Teknologi kemarin.

Corrie menjelaskan, dalam penelitian pada 1996, dia melakukan sistem zonasi permukiman di bawah dan sekitar lokasi jalur hingga jarak lebih dari 30 meter. Corrie dan timnya mengkaji mulai pengaruh terhadap sel, jaringan, sampai kelompok manusia. Hasilnya, menurut Corrie, tidak ditemukan hubungan antara kanker leukemia yang diderita anak-anak dan SUTET seperti yang ditakutkan. "Kami memang akan meng-update hasil itu, tapi sampai saat ini kesimpulannya (SUTET) tidak berbahaya," katanya.

Dari pengukuran pajanan medan listrik dan medan magnetnya, Tumiran, Ketua Departemen Teknik Elektronika Fakultas Teknik Universitas Gadjah Mada, dan koleganya asal Institut Teknologi Bandung, Bambang Anggoro, mendukung kesimpulan Corrie. Tumiran mengungkapkan hasil penelitiannya di Nganjuk, Jawa Timur, dan Ungaran, Jawa Tengah, sedangkan Bambang menyatakan pernah mengukur di sepanjang jaringan transmisi dan distribusi listrik PLN Sumedang-Cirebon, Jawa Barat.

Keduanya menemukan angka pajanan medan listrik dan magnet tepat di bawah kabel SUTET yang jauh di bawah ambang batas. Badan Kesehatan Dunia (WHO) menetapkan, masing-masing pajanannya tidak boleh melebihi 5 kiloVolt per meter dan 0,1 miliTesla khusus untuk permukiman. "Di dalam rumah saya bahkan menemukan ukuran yang jauh lebih kecil, 0,3 kV per meter," kata Bambang.

Sedangkan untuk pajanan medan magnet, Tumiran justru berani mengabaikannya. Dia, yang melakukan penelitian pada 1997, menemukan data hanya 3-4 mikroTesla.

Rumah atau bangunan di bawah jalur SUTET memang bermuatan listrik karena pajanan elektromagnet. Tapi itu tidak akan menjadi masalah karena akan terbuang ke bumi atau tanah (grounded). "Sebenarnya lebih berbahaya bagi keluarga menonton televisi terlalu dekat ketimbang tinggal di bawah SUTET," katanya.

Bambang dan Tumiran tampaknya sepakat kalau SUTET tak lebih dari sekadar kabel besar yang melintas di atas kepala. "Karena itu, cemas menjadi wajar," tutur Corrie.

Sumber: http://korantempo.com/korantempo/2006/02/15/
Ilmu_dan_Teknologi/krn,20060215,52.id.html

SUTET - Saluran Udara Tegangan Ekstra Tinggi

Tak dipungkiri Kota Legenda Wisata dilalui SUTET. Ada sebagian pihak yang mencibir KOTA SEJUTA SUTET. Sebenarnya bagaimana sih sutet itu?

Menurut info dari http://id.wikipedia.org/wiki/Saluran_udara_tegangan_ekstra_tinggi

SUTET masih kontroversi. Ada yang bilang tak masalah. Ada yang bilang menyebabkan pening, kanker, dan leukemia.

Biar lebih sip. Silakan simak berbagai ulasan SUTET.

===================================================================================
Saluran udara tegangan ekstra tinggi

Menara transmisi listrik

SUTET adalah singkatan dari Saluran Udara Tegangan Ekstra Tinggi dengan kekuatan 500 kV yang ditujukan untuk menyalurkan energi listrik dari pusat-pusat pembangkit yang jaraknya jauh menuju pusat-pusat beban sehingga energi listrik bisa disalurkan dengan efisien.

Berbagai macam kekhawatiran muncul akan dampak SUTET terhadap kesehatan bagi penduduk yang tinggal di wilayah yang dilewati jalur SUTET.

Penelitian dan dampak

Hasil penelitian yang sangat mempengaruhi pandangan masyarakat dunia tentang hubungan kanker otak pada anak dengan paparan medan elektromagnetik adalah hasil penelitian Wertheimer dan Leper tahun 1979, yang sempat menggoncangkan dunia karena risiko positif yang dilaporkannya. Sejak penelitian tersebut, berbagai studi epidemiologi dan laboratorium lainnya dilakukan sebagai replikasi dan eskpansi penelitian Wertheimer di berbagai negara. Namun hasil yang didapat justru beragam, bahkan sebagian besar bersifat kontradiktif. Dilaporkan, studi Feyching dan Ahlboum, 1993, meta analisisnya merupakan penelitian yang mendukung hasil Wertheimer, sedangkan studi National Cancer Institute (NCI) tahun 1997 di Amerika Serikat, studi Kanada 1999, studi Inggris 1999-2000 dan studi Selandia Baru menemukan hasil yang tidak mendukung Wertheimer.

Sebuah studi yang dilakukan oleh Dr. Gerald Draper dan koleganya dari Chilhood Cancer Research Group di Oxford University dan Dr. John Swanson, penasehat sains di National Grid Transco, menemukan bahwa anak-anak yang tinggal kurang dari 200 meter dari jalur tegangan tinggi, saat dilahirkan memiliki resiko menderita leukimia sebesar 70 persen daripada yang tinggal dari jarak 600 meter atau lebih. Ditemukan lima kali lipat lebih besar kasus leukimia pada bayi yang dilahirkan di daerah sekitar SUTET atau sebesar 400 dalam setahun dari 1 persen jumlah penduduk yang tinggal di daerah tersebut. Secara keseluruhan, anak-anak yang hidupnya dalam radius 200 meter dari tiang tegangan tinggi sekitar 70 persen diantaranya terkena leukimia dan yang hidup antara 200-600 meter sekitar 20 persen dibandingkan dengan yang tinggal lebih dari 600 meter. Walaupun demikian, peningkatan resiko leukemia masih ditemukan pada jarak dimana besar medan listrik bernilai di bawah kondisi di dalam rumah, sehingga disimpulkan bahwa peningkatan resiko leukemia tidak diakibatkan oleh medan listrik atau medan magnet yang diakibatkan oleh SUTET

Berdasarkan hasil penelitian Dr. dr. Anies, M.Kes. PKK, pada penduduk di bawah SUTET 500 kV di Kabupaten Pekalongan, Kabupaten Pemalang, dan Kabupaten Tegal (2004) menunjukkan bahwa besar risiko electrical sensitivity pada penduduk yang bertempat tinggal di bawah SUTET 500 kV adalah 5,8 kali lebih besar dibandingkan dengan penduduk yang tidak bertempat tinggal di bawah SUTET 500 kV. Secara umum dapat disimpulkan bahwa pajanan medan elektromagnetik yang berasal dari SUTET 500 kV berisiko menimbulkan gangguan kesehatan pada penduduk, yaitu sekumpulan gejala hipersensitivitas yang dikenal dengan electrical sensitivity berupa keluhan sakit kepala (headache), pening (dizziness), dan keletihan menahun (chronic fatigue syndrome). Hasil penemuan Anies menyimpulkan bahwa ketiga gejala tersebut dapat dialami sekaligus oleh seseorang, sehingga penemuan baru ini diwacanakan sebagai "Trias Anies".

Corrie Wawolumaya dari Bagian Ilmu Kedokteran Komunitas Fakultas Kedokteran Universitas Indonesia pernah melakukan penelitian terhadap pemukiman di sekitar SUTET. Hasilnya tidak ditemukan hubungan antara kanker leukemia dan SUTET

John Moulder mencoba menarik kesimpulan dari ratusan penelitian tentang dampak SUTET terhadap kesehatan. Moulder menyimpulkan bahwa tidak ada hubungan sebab akibat antara medan tegangan listrik dan kesehatan manusia (termasuk kanker). Walaupun demikian medan tegangan listrik belum bisa dibuktikan benar-benar aman. Selain itu disepakati juga bahwa jika ada bahaya kesehatan terhadap manusia, maka itu hanya terjadi pada sebagian kecil kelompok

WHO berkesimpulan bahwa tidak banyak pengaruh yang ditimbulkan oleh medan listrik sampai 20 kV/m pada manusia dan medan listrik sampai 100 kV/m tidak mempengaruhi kesehatan hewan percobaan. Selain itu, percobaan beberapa sukarelawan pada medan magnet 5 mT hanya memiliki sedikit efek pada hasil uji klinis dan fisik